313 research outputs found

    Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: a Bayesian analysis of 20 years of experimental data

    Get PDF
    In this study, we analysed datasets of N2O emission factors (EFs) from 21 separate studies carried out on arable and managed grasslands across the UK and Ireland over the past 20 years. A total of 641 separate events were collated from 40 experimental field sites. Individual EFs ranged over an order of magnitude (0–12% of applied N) for each fertiliser type, following a log-normal distribution in all cases. Our study shows that a Bayesian approach can provide a robust statistical method that is capable of performing uncertainty analysis on log-normal distributed data in a more defensible manner than conventional statistical methods allow. This method allowed for a national scale comparison of EFs between the most commonly applied mineral fertilisers based solely on previously published data (UK and Ireland in this case). The study shows that ammonium nitrate (AN) and Calcium ammonium nitrate (CAN) are the largest emitting fertiliser types by mass across the British Isles (temperate climate zone), with EFs of 1.1 (1.0–1.2) % and 1.0 (0.7–1.3) % for all recorded events, respectively; however, emissions from AN applications were significantly lower for applications to arable fields (0.6%) than to grasslands (1.3%). EFs associated with urea (CO(NH₂)₂) were significantly lower than AN for grasslands with an EF of 0.6 (0.5–0.7) %, but slightly higher for arable fields with an EF of 0.7 (0.4–1.4) %. The study highlights the potential effectiveness of microbial inhibitors at reducing emissions of N2O from mineral fertilisers, with Dicyandiamide (DCD) treated AN reducing emissions by approximately 28% and urea treated with either DCD or N-(n)-butyl) thiophosphorictriamide (NBTP) reducing emissions by approximately 40%. Although limited by a relatively small sample size (n = 11), urea treated with both DCD and NBPT appeared to have the lowest EF of all treatments at 0.13 (0.08–0.21) %, highlighting the potential to significantly reduce N2O emissions at regional scales if applied instead of conventional nitrogen fertilisers

    The impact of atmospheric N deposition and N fertilizer type on soil nitric oxide and nitrous oxide fluxes from agricultural and forest Eutric Regosols

    Get PDF
    Agricultural and forest soils with low organic C content and high alkalinity were studied over 17 days to investigate the potential response of the atmospheric pollutant nitric oxide (NO) and the greenhouse gas nitrous oxide (N2O) on (1) increased N deposition rates to forest soil; (2) different fertilizer types to agricultural soil and (3) a simulated rain event to forest and agricultural soils. Cumulative forest soil NO emissions (148–350 ng NO-N g−1) were ~ 4 times larger than N2O emissions (37–69 ng N2O-N g−1). Contrary, agricultural soil NO emissions (21–376 ng NO-N g−1) were ~ 16 times smaller than N2O emissions (45–8491 ng N2O-N g−1). Increasing N deposition rates 10 fold to 30 kg N ha−1 yr−1, doubled soil NO emissions and NO3− concentrations. As such high N deposition rates are not atypical in China, more attention should be paid on forest soil NO research. Comparing the fertilizers urea, ammonium nitrate, and urea coated with the urease inhibitor ‘Agrotain®,’ demonstrated that the inhibitor significantly reduced NO and N2O emissions. This is an unintended, not well-known benefit, because the primary function of Agrotain® is to reduce emissions of the atmospheric pollutant ammonia. Simulating a climate change event, a large rainfall after drought, increased soil NO and N2O emissions from both agricultural and forest soils. Such pulses of emissions can contribute significantly to annual NO and N2O emissions, but currently do not receive adequate attention amongst the measurement and modeling communities

    Inference of spatial heterogeneity in surface fluxes from eddy covariance data: a case study from a subarctic mire ecosystem

    Get PDF
    Horizontal heterogeneity causes difficulties in the eddy covariance technique for measuring surface fluxes, related to both advection and the confounding of temporal and spatial variability. Our aim here was to address this problem, using statistical modelling and footprint analysis, applied to a case study of fluxes of sensible heat and methane in a subarctic mire. We applied a new method to infer the spatial heterogeneity in fluxes of sensible heat and methane from a subarctic ecosystem in northern Sweden, where there were clear differences in surface types within the landscape. We inferred the flux from each of these surface types, using a Bayesian approach to estimate the parameters of a hierarchical model which includes coefficients for the different surface types. The approach is based on the variation in the flux observed at a single eddy covariance tower as the footprint changes over time. The method has applications wherever spatial heterogeneity is a concern in the interpretation of eddy covariance fluxes

    Growing season CH4 and N2O fluxes from a subarctic landscape in northern Finland; from chamber to landscape scale

    Get PDF
    Subarctic and boreal emissions of CH4 are important contributors to the atmospheric greenhouse gas (GHG) balance and subsequently the global radiative forcing. Whilst N2O emissions may be lower, the much greater radiative forcing they produce justifies their inclusion in GHG studies. In addition to the quantification of flux magnitude, it is essential that we understand the drivers of emissions to be able to accurately predict climate-driven changes and potential feedback mechanisms. Hence this study aims to increase our understanding of what drives fluxes of CH4 and N2O in a subarctic forest/wetland landscape during peak summer conditions and into the shoulder season, exploring both spatial and temporal variability, and uses satellite-derived spectral data to extrapolate from chamber-scale fluxes to a 2 km  ×  2 km landscape area. From static chamber measurements made during summer and autumn campaigns in 2012 in the Sodankylä region of northern Finland, we concluded that wetlands represent a significant source of CH4 (3.35 ± 0.44 mg C m−2 h−1 during the summer campaign and 0.62 ± 0.09 mg C m−2 h−1 during the autumn campaign), whilst the surrounding forests represent a small sink (−0.06 ± < 0.01 mg C m−2 h−1 during the summer campaign and −0.03 ± < 0.01 mg C m−2 h−1 during the autumn campaign). N2O fluxes were near-zero across both ecosystems. We found a weak negative relationship between CH4 emissions and water table depth in the wetland, with emissions decreasing as the water table approached and flooded the soil surface and a positive relationship between CH4 emissions and the presence of Sphagnum mosses. Temperature was also an important driver of CH4 with emissions increasing to a peak at approximately 12 °C. Little could be determined about the drivers of N2O emissions given the small magnitude of the fluxes. A multiple regression modelling approach was used to describe CH4 emissions based on spectral data from PLEIADES PA1 satellite imagery across a 2 km  ×  2 km landscape. When applied across the whole image domain we calculated a CH4 source of 2.05 ± 0.61 mg C m−2 h−1. This was significantly higher than landscape estimates based on either a simple mean or weighted by forest/wetland proportion (0.99 ± 0.16, 0.93 ± 0.12 mg C m−2 h−1, respectively). Hence we conclude that ignoring the detailed spatial variability in CH4 emissions within a landscape leads to a potentially significant underestimation of landscape-scale fluxes. Given the small magnitude of measured N2O fluxes a similar level of detailed upscaling was not needed; we conclude that N2O fluxes do not currently comprise an important component of the landscape-scale GHG budget at this site

    Linking Nitrous Oxide and Nitric Oxide Fluxes to Microbial Communities in Tropical Forest Soils and Oil Palm Plantations in Malaysia in Laboratory Incubations

    Get PDF
    Funding Information: We thank the NERC LOMBOK field assistants for their help with soil sampling, especially Lawlina Mansul and Arnold James. We also thank Graeme Nicol for initial discussions in this project. Funding. This project was funded as LOMBOK (Land-use Options for Maintaining BiOdiversity and eKosystem functions) by the NERC Human Modified Tropical Forest (HMTF) research programme (NE/K016091/1). CG-R was funded by a University Royal Society Fellowship (UF150571).Peer reviewedPublisher PD

    The outer segment serves as a default destination for the trafficking of membrane proteins in photoreceptors

    Get PDF
    Photoreceptors are compartmentalized neurons in which all proteins responsible for evoking visual signals are confined to the outer segment. Yet, the mechanisms responsible for establishing and maintaining photoreceptor compartmentalization are poorly understood. Here we investigated the targeting of two related membrane proteins, R9AP and syntaxin 3, one residing within and the other excluded from the outer segment. Surprisingly, we have found that only syntaxin 3 has targeting information encoded in its sequence and its removal redirects this protein to the outer segment. Furthermore, proteins residing in the endoplasmic reticulum and mitochondria were similarly redirected to the outer segment after removing their targeting signals. This reveals a pattern where membrane proteins lacking specific targeting information are delivered to the outer segment, which is likely to reflect the enormous appetite of this organelle for new material necessitated by its constant renewal. This also implies that every protein residing outside the outer segment must have a means to avoid this “default” trafficking flow

    Geophysical analysis of an area affected by subsurface dissolution - case study of an inland salt marsh in northern Thuringia, Germany

    Get PDF
    The subsurface dissolution of soluble rocks can affect areas over a long period of time and pose a severe hazard. We show the benefits of a combined approach using P-wave and SH-wave reflection seismics, electrical resistivity tomography, transient electromagnetics, and gravimetry for a better understanding of the dissolution process. The study area, "Esperstedter Ried"in northern Thuringia, Germany, located south of the Kyffhäuser hills, is a large inland salt marsh that developed due to dissolution of soluble rocks at approximately 300 m depth. We were able to locate buried dissolution structures and zones, faults and fractures, and potential fluid pathways, aquifers, and aquitards based on seismic and electromagnetic surveys. Further improvement of the model was accomplished by analyzing gravimetry data that indicates dissolution-induced mass movement, as shown by local minima of the Bouguer anomaly for the Esperstedter Ried. Forward modeling of the gravimetry data, in combination with the seismic results, delivered a cross section through the inland salt marsh from north to south. We conclude that tectonic movements during the Tertiary, which led to the uplift of the Kyffhäuser hills and the formation of faults parallel and perpendicular to the low mountain range, were the initial trigger for subsurface dissolution. The faults and the fractured Triassic and lower Tertiary deposits serve as fluid pathways for groundwater to leach the deep Permian Zechstein deposits, since dissolution and erosional processes are more intense near faults. The artesian-confined saltwater rises towards the surface along the faults and fracture networks, and it formed the inland salt marsh over time. In the past, dissolution of the Zechstein formations formed several, now buried, sagging and collapse structures, and, since the entire region is affected by recent sinkhole development, dissolution is still ongoing. From the results of this study, we suggest that the combined geophysical investigation of areas prone to subsurface dissolution can improve the knowledge of control factors, hazardous areas, and thus local dissolution processes

    Comparison of greenhouse gas fluxes from tropical forests and oil palm plantations on mineral soil

    Get PDF
    In Southeast Asia, oil palm (OP) plantations have largely replaced tropical forests. The impact of this shift in land use on greenhouse gas (GHG) fluxes remains highly uncertain, mainly due to a relatively small pool of available data. The aim of this study is to quantify differences of nitrous oxide (N2O) and methane (CH4) fluxes as well as soil carbon dioxide (CO2) respiration rates from logged forests, oil palm plantations of different ages, and an adjacent small riparian area. Nitrous oxide fluxes are the focus of this study, as these emissions are expected to increase significantly due to the nitrogen (N) fertilizer application in the plantations. This study was conducted in the SAFE (Stability of Altered Forest Ecosystems) landscape in Malaysian Borneo (Sabah) with measurements every 2 months over a 2-year period. GHG fluxes were measured by static chambers together with key soil physicochemical parameters and microbial biodiversity. At all sites, N2O fluxes were spatially and temporally highly variable. On average the largest fluxes (incl. 95 % CI) were measured from OP plantations (45.1 (24.0–78.5) µg m−2 h−1 N2O-N), slightly smaller fluxes from the riparian area (29.4 (2.8–84.7) µg m−2 h−1 N2O-N), and the smallest fluxes from logged forests (16.0 (4.0–36.3) µg m−2 h−1 N2O-N). Methane fluxes were generally small (mean ± SD): −2.6 ± 17.2 µg CH4-C m−2 h−1 for OP and 1.3 ± 12.6 µg CH4-C m−2 h−1 for riparian, with the range of measured CH4 fluxes being largest in logged forests (2.2 ± 48.3 µg CH4-C m−2 h−1). Soil respiration rates were larger from riparian areas (157.7 ± 106 mg m−2 h−1 CO2-C) and logged forests (137.4 ± 95 mg m−2 h−1 CO2-C) than OP plantations (93.3 ± 70 mg m−2 h−1 CO2-C) as a result of larger amounts of decomposing leaf litter. Microbial communities were distinctly different between the different land-use types and sites. Bacterial communities were linked to soil pH, and fungal and eukaryotic communities were linked to land use. Despite measuring a large number of environmental parameters, mixed models could only explain up to 17 % of the variance of measured fluxes for N2O, 3 % of CH4, and 25 % of soil respiration. Scaling up measured N2O fluxes to Sabah using land areas for forest and OP resulted in emissions increasing from 7.6 Mt (95 % confidence interval, −3.0–22.3 Mt) yr−1 in 1973 to 11.4 Mt (0.2–28.6 Mt) yr−1 in 2015 due to the increasing area of forest converted to OP plantations over the last ∼ 40 years
    corecore